
FÍSICA da MATÉRIA CONDENSADA
Mestrado em Engenharia F́ısica Tecnológica

Série 3b

1. Masses, Lagrangian, Hamiltonian and Legéndre transformation.

a) Starting from the Lagrangian L(~x,~v) = −mc2
√

1− (~v
c
)2 − V (~x), for a

point particle, show that the equation of motion of the particle d~p
dt

= −∇V ,

with ~p = m~v√
1−(~v

c
)2

can be writen as m⊥~a⊥ + m‖~a‖ = −∇V , where (~a⊥)i =∑
j P

ij
⊥
dvj

dt
and

(
~a‖
)i

=
∑
j P

ij
‖
dvj

dt
, with P ij

‖ = vivj

v2
and P⊥ = I−P‖. Determine

the (transversal and longitudinal) masses m⊥ and m‖.

b) Using for the energy the expession E = mc2

√
1 +

(
~p
mc

)2
+V (~x), obtain

∂E
∂~p

= ~v and ∂2E
∂pi∂pj

= 1
m⊥
P ij
⊥ + 1

m‖
P ij
‖ , where P ij

‖ = pipj

p2
and P⊥ = I − P‖.

What are m⊥ and m‖, according to this definition? Verify that the masses
and the projectors are the same as obtained above.

c) Explain this fact, using that the Hamiltonian is given by a Legéndre
transformation of the Lagrangian.

Hint: p
mv

= 1√
1−( v

c
)2

=

√
1 +

(
p
mc

)2
.

2. Tight binding interaction and effective mass.
Consider a free electron system, in a d-dimensional lattice, with Hamil-

tonian given by

H =
d∑

α=1

∑
~x

a†(~x)tαa(~x+ a~eα) + h.c. =
∑
~k

a†~kε(
~k)a~k

where a(~x) = 1√
N

∑
~k e

i~k·~xa~k and a†(~x) = 1√
N

∑
~k a
†
~k
e−i

~k·~x, and tα is real and
negative.

a) Obtain the band energy

ε(~k) =
d∑

α=1

2tα cos(kαa).

b) Define the effective masses m−1
αβ = ∂2ε(~k)

∂kα∂kβ
, for kα = 0 and kα = ±π/a.

Interpret physically the results.
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3. Density of states in a d-dimensional isotropic system.
a) In a d-dimensional system, in the thermodynamic limit, we can write

1

V

∑
~kn

→
∫ ddk

(2π)d
f(k) =

∫ ∞
0

Sdk
d−1f(k)

ddk

(2π)d

where |k| = |~k| and Sd is the area of the sphere in a d-dimensional space.

Choosing f(k) = e−
~k2

2 , show that

Sd =
2πd/2

Γ(d
2
)

giving S1 = 2, S2 = 2π and S3 = 4π, for d = 1, 2, 3.

b) Considering a system of free particles with energy given by ε(k) = (h̄~k)2

2m

(parabolic band), show that Dd(ε(k)) =, defined by

∫ ddk

(2π)d
f(ε(k)) =

∫ ∞
0
Dd(ε)f(ε)dε

is given by

Dd(ε) =
Sd

(2π)d
kd−1dk

dε
=

1

2

Sd
(2π)d

kd−2 1
dε
dk2

=
Sd

(2π)d
m

h̄2

(
2mε

h̄2

) d−2
2

c) Plot Dd(ε), as a function of ε, for d = 1, 2, 3.

4. Quantum gas in two dimensions.
Consider a free Bosonic or Fermionic system, in 2 dimensions, in thermal

equilibrium at temperature T .
a) Write down the equations for N =< N̂ > and E =< H >.
b) Solve the equation N =< N̂ > for µ.
c) Show that the specific heat of the Bosonic and Fermionic systems is

the same.
References:
Quantum Statistics of Ideal Gases in Two Dimensions, R. M. May, Phys.

Rev. 153, A1515 (1964).
Specific Heat of Two-Dimensional Ideal quantum Gases, V. V. Ul’yanov

and S. S. Sokolov, Soviet Physics Journal 18, 138-139 (1975).
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5. Itinerant magnetism at T = 0.
Consider a system with a fixed number N of electrons, described by the

Hubbard model with Hamiltonian given by

H =
∑
ij

∑
σ

c†iσtijcjσ + U
∑
i

ni↑ni↓,

without external magnetic field, at temperature T = 0.
a) Use the product of two Slater determinants, one for each value of the

spin, or, equivalently, modify the usual Fermi sea, according to

|ΦStoner >=
∏

k<kF↑

c†~k↑

∏
k<kF↓

c†~k↓|0 >

for the ferromagnetic state with a uniform magnetization M = 1
2
(N↑ −N↓),

minimize the energy E =< H >, subject to the constraint N = N↑ + N↓,
introducing a Lagrange multiplier µ, leading to the equations

ε(kF↑)− µ+ Un↓ = 0

ε(kF↓)− µ+ Un↑ = 0

where n↑ =
N↑
V

, n↓ =
N↓
V

, giving

ε(kF↑) + Un↓ = ε(kF↓) + Un↑

together with
N = N↑ +N↓.

Interpret physically.

b) Considering free electrons with energy given by ε(k) = (h̄k)2

2m
show that

2DE
V

n2
=

9

20

[
(1 +

2m

n
)5/3 + (1− 2m

n
)5/3

]
+

1

2
DU(1− (

2m

n
)2)

where n = N
V

, m = M
V

and D is the density of states at kF , in the absence of
interactions i.e. for U = 0.

Minimizing the energy, verify that there is a trivial solution m = 0 and,
using the nontrivial solution, find the Stoner condition DU > 1 for the
existence of the phase transition at T = 0.

c) Show that the magnetic phase is energetically more stable, when the
Stoner criterion is satisfied.
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