FÍSICA da MATÉRIA CONDENSADA

Mestrado em Engenharia Física Tecnológica Série 3b

1. Masses, Lagrangian, Hamiltonian and Legéndre transformation.

a) Starting from the Lagrangian $\mathcal{L}(\vec{x}, \vec{v}) = -mc^2\sqrt{1-(\frac{\vec{v}}{c})^2}$ $(\frac{\vec{v}}{c})^2 - V(\vec{x}),$ for a point particle, show that the equation of motion of the particle $\frac{d\vec{p}}{dt} = -\nabla V$, with $\vec{p} = \frac{m\vec{v}}{4\pi\hat{v}}$ $\frac{m\vec{v}}{1-(\frac{\vec{v}}{c})^2}$ can be writen as $m_\perp\vec{a}_\perp + m_\parallel\vec{a}_\parallel = -\nabla V$, where $(\vec{a}_\perp)^i$ c $\sum_j P_\perp^{ij}$ $\frac{d\vec{v}^j}{dt}\frac{d\vec{v}^j}{dt}$ and $\left(\vec{a}_{\parallel}\right)^i = \sum_j P_{\parallel}^{ij}$ $\frac{dv^j}{dt}$, with $P_{\parallel}^{ij} = \frac{v^i v^j}{v^2}$ $\frac{v_i v_j}{v^2}$ and $P_{\perp} = I - P_{\parallel}$. Determine the (transversal and longitudinal) masses m_{\perp} and m_{\parallel} .

b) Using for the energy the expession $E = mc^2 \sqrt{1 + (\frac{\vec{p}}{mc})^2} + V(\vec{x})$, obtain $\frac{\partial E}{\partial \vec{p}} = \vec{v}$ and $\frac{\partial^2 E}{\partial p^i \partial p^j} = \frac{1}{m}$ $\frac{1}{m_{\perp}}P_{\perp}^{ij}+\frac{1}{m}$ $\frac{1}{m_\parallel}P^{ij}_\parallel$ P_{\parallel}^{ij} , where $P_{\parallel}^{ij} = \frac{p^i p^j}{p^2}$ $\frac{p^p p^j}{p^2}$ and $P_{\perp} = I - P_{\parallel}$. What are m_{\perp} and m_{\parallel} , according to this definition? Verify that the masses and the projectors are the same as obtained above.

c) Explain this fact, using that the Hamiltonian is given by a Legéndre transformation of the Lagrangian.

Hint:
$$
\frac{p}{mv} = \frac{1}{\sqrt{1 - (\frac{v}{c})^2}} = \sqrt{1 + (\frac{p}{mc})^2}.
$$

2. Tight binding interaction and effective mass.

Consider a free electron system, in a d-dimensional lattice, with Hamiltonian given by

$$
\mathcal{H} = \sum_{\alpha=1}^{d} \sum_{\vec{x}} a^{\dagger}(\vec{x}) t_{\alpha} a(\vec{x} + a\vec{e}_{\alpha}) + h.c. = \sum_{\vec{k}} a_{\vec{k}}^{\dagger} \epsilon(\vec{k}) a_{\vec{k}}
$$

where $a(\vec{x}) = \frac{1}{\sqrt{2}}$ $\frac{1}{N} \sum_{\vec{k}} e^{i\vec{k}\cdot\vec{x}} a_{\vec{k}}$ and $a^{\dagger}(\vec{x}) = \frac{1}{\sqrt{2}}$ $\frac{1}{\overline{N}}\sum_{\vec{k}}a^{\dagger}_{\vec{k}}$ $\frac{\dagger}{\vec{k}}e^{-i\vec{k}\cdot\vec{x}},$ and t_{α} is real and negative.

a) Obtain the band energy

$$
\epsilon(\vec{k}) = \sum_{\alpha=1}^d 2t_\alpha \cos(k_\alpha a).
$$

b) Define the effective masses $m_{\alpha\beta}^{-1} = \frac{\partial^2 \epsilon(\vec{k})}{\partial k_{\alpha} \partial k_{\beta}}$ $\frac{\partial^2 \epsilon(k)}{\partial k_\alpha \partial k_\beta}$, for $k_\alpha = 0$ and $k_\alpha = \pm \pi/a$. Interpret physically the results.

- 3. Density of states in a d-dimensional isotropic system.
- a) In a d-dimensional system, in the thermodynamic limit, we can write

$$
\frac{1}{V} \sum_{\vec{k}_n} \to \int \frac{d^d k}{(2\pi)^d} f(k) = \int_0^\infty S_d k^{d-1} f(k) \frac{d^d k}{(2\pi)^d}
$$

where $|k| = |\vec{k}|$ and S_d is the area of the sphere in a d-dimensional space. Choosing $f(k) = e^{-\frac{\vec{k}^2}{2}}$, show that

$$
S_d = \frac{2\pi^{d/2}}{\Gamma(\frac{d}{2})}
$$

giving $S_1 = 2$, $S_2 = 2\pi$ and $S_3 = 4\pi$, for $d = 1, 2, 3$.

b) Considering a system of free particles with energy given by $\epsilon(k) = \frac{(\hbar \vec{k})^2}{2m}$ 2m (parabolic band), show that $\mathcal{D}_d(\epsilon(k)) =$, defined by

$$
\int \frac{d^d k}{(2\pi)^d} f(\epsilon(k)) = \int_0^\infty \mathcal{D}_d(\epsilon) f(\epsilon) d\epsilon
$$

is given by

$$
\mathcal{D}_d(\epsilon) = \frac{S_d}{(2\pi)^d} k^{d-1} \frac{dk}{d\epsilon} = \frac{1}{2} \frac{S_d}{(2\pi)^d} k^{d-2} \frac{1}{\frac{d\epsilon}{dk^2}} = \frac{S_d}{(2\pi)^d} \frac{m}{\hbar^2} \left(\frac{2m\epsilon}{\hbar^2}\right)^{\frac{d-2}{2}}
$$

c) Plot $\mathcal{D}_d(\epsilon)$, as a function of ϵ , for $d = 1, 2, 3$.

4. Quantum gas in two dimensions.

Consider a free Bosonic or Fermionic system, in 2 dimensions, in thermal equilibrium at temperature T.

a) Write down the equations for $N = \langle \hat{N} \rangle$ and $E = \langle \mathcal{H} \rangle$.

b) Solve the equation $N = \langle \hat{N} \rangle$ for μ .

c) Show that the specific heat of the Bosonic and Fermionic systems is the same.

References:

Quantum Statistics of Ideal Gases in Two Dimensions, R. M. May, Phys. Rev. 153, A1515 (1964).

Specific Heat of Two-Dimensional Ideal quantum Gases, V. V. Ul'yanov and S. S. Sokolov, Soviet Physics Journal 18, 138-139 (1975).

5. Itinerant magnetism at $T = 0$.

Consider a system with a fixed number N of electrons, described by the Hubbard model with Hamiltonian given by

$$
\mathcal{H} = \sum_{ij} \sum_{\sigma} c_{i\sigma}^{\dagger} t_{ij} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow},
$$

without external magnetic field, at temperature $T = 0$.

a) Use the product of two Slater determinants, one for each value of the spin, or, equivalently, modify the usual Fermi sea, according to

$$
|\Phi_{Stoner}\rangle = \prod_{k < k_{F\uparrow}} c^{\dagger}_{\vec{k}\uparrow} \prod_{k < k_{F\downarrow}} c^{\dagger}_{\vec{k}\downarrow} |0>
$$

for the ferromagnetic state with a uniform magnetization $M = \frac{1}{2}$ $\frac{1}{2}(N_{\uparrow}-N_{\downarrow}),$ minimize the energy $E = \langle H \rangle$, subject to the constraint $N = N_{\uparrow} + N_{\downarrow}$, introducing a Lagrange multiplier μ , leading to the equations

$$
\epsilon(k_{F\uparrow}) - \mu + Un_{\downarrow} = 0
$$

$$
\epsilon(k_{F\downarrow}) - \mu + Un_{\uparrow} = 0
$$

where $n_{\uparrow} = \frac{N_{\uparrow}}{V}$ $\frac{N_{\uparrow}}{V},\,n_{\downarrow}=\frac{N_{\downarrow}}{V}$ $\frac{N_{\downarrow}}{V}$, giving

$$
\epsilon(k_{F\uparrow}) + Un_{\downarrow} = \epsilon(k_{F\downarrow}) + Un_{\uparrow}
$$

together with

$$
N = N_{\uparrow} + N_{\downarrow}.
$$

Interpret physically.

b) Considering free electrons with energy given by $\epsilon(k) = \frac{(\hbar k)^2}{2m}$ $\frac{h k)^2}{2m}$ show that E

$$
\frac{2\mathcal{D}\frac{E}{V}}{n^2} = \frac{9}{20} \left[(1 + \frac{2m}{n})^{5/3} + (1 - \frac{2m}{n})^{5/3} \right] + \frac{1}{2} \mathcal{D}U(1 - (\frac{2m}{n})^2)
$$

where $n = \frac{N}{V}$ $\frac{N}{V}, m = \frac{M}{V}$ $\frac{M}{V}$ and D is the density of states at k_F , in the absence of interactions i.e. for $U = 0$.

Minimizing the energy, verify that there is a trivial solution $m = 0$ and, using the nontrivial solution, find the Stoner condition $DU > 1$ for the existence of the phase transition at $T = 0$.

c) Show that the magnetic phase is energetically more stable, when the Stoner criterion is satisfied.