FÍSICA da MATÉRIA CONDENSADA

Mestrado em Engenharia Física Tecnológica Série 2a

1. Uma cadeia de N partículas de massa m, com condições fronteira periódicas, está em repouso quando as partículas estão separadas de uma distância a. Expandindo a energia potencial do sistema em potências dos desvios, η_i , das coordenadas, para fora da posição de equilíbrio, obtemos:

$$V = -\frac{m}{2} \sum_{ij} C_{ij} \eta_i \eta_j,$$

com $C_{ji} = C_{ij}$, e tendo escolhido como zero da energia o valor da energia no ponto de equilíbrio. Como o sistema é invariante para translações, verifica-se que $C_{ij} = C(i-j) = C_{j-i}$.

a) Obtenha as equações de movimento. Por transformação de Fourier, introduza os modos normais de vibração. Obtenha a relação de dispersão $\omega_q^2 = -\tilde{C}_q$ em que $\tilde{C}_q = \sum_{x_i - x_j} e^{-iq(x_i - x_j)} C_{ij}$.

Verifique que o Hamiltoniano e o Lagrangeano ficam completamente desacoplados nas novas variáveis (modos normais de vibração).

- b) Dada a invariância para translações do espaço, um deslocamento arbitrário de uma dada solução das equações de movimento deverá ser também solução. Verifique que terá de ser $\tilde{C}_0=0$, implicando o anulamento de ω_q quando $q\to 0$, ou seja, a existência de um bosão de Nambu-Goldstone.
- c) Use a identidade $2\eta_i\eta_j=\eta_i^2+\eta_j^2-(\eta_i-\eta_j)^2$ para reescrever o potencial na forma

$$V = \frac{m}{4} \sum_{ij} C_{ij} (\eta_i - \eta_j)^2.$$

Interprete fisicamente. Obtenha de novo as equações de movimento e a relação de dispersão, na forma $\omega_q^2 = \tilde{C}_0 - \tilde{C}_q$.

- d) Generalize para um sistema de dimensão d.
- e) Considere o limite contínuo $a \to 0$.
- 2. Na ausência de uma simetria de inversão $\phi \to -\phi$, a densidade Hamiltoniana efectiva da teoria de Landau para uma transição de fase pode ter potências ímpares do parâmetro de order. Estude o efeito de um termo cúbico, considerando a densidade Hamiltoniana

$$\mathcal{H} = \frac{1}{2}r\phi^2 + \frac{1}{4}b\phi^4 - \frac{1}{3}c\phi^3,$$

não incluindo o termo usual de violação de simetria, dado por $-h\phi$, e sendo $r=a(T-T_0),\,a,b,c$ positivos e T a temperatura, com T_0 uma dada temperatura.

- a) Mostre o aparecimento de uma solução com um valor médio não nulo para o parâmetro de ordem, abaixo de uma dada temperatura T^* . Determine T^* . Faça o gráfico esquemático de \mathcal{H} , em função de ϕ , mostrando a sua evolução em função da temperatura.
- b) Mostre que a solução considerada na alínea anterior se torna a mais estável abaixo de uma temperatura T_1 . Determine T_1 . Faça o gráfico esquemático do parâmetro de ordem em função da temperatura e classifique esta transição de fase quanto à ordem.
- c) O que acontece quando $T < T_0$? Determine as regiões de estabilidade e de metaestabilidade das soluções e o comportamento do sistema num ciclo em que se varia a temperatura.

Sugestão: use variáveis reduzidas $t = \frac{T - T_0}{T_1 - T_0}$ e $\varphi = \frac{\phi}{\phi_1}$, em que ϕ_1 é o valor de ϕ para $T = T_1$. Normalize \mathcal{H} de modo que o coeficiente do termo em φ^4 passe a ser 1.

3. Considere o modelo de Ising em campo transverso, a d dimensões, em equilíbrio termodinâmico à temperatura T e definido pelo Hamiltoniano:

$$\mathcal{H} = -\Gamma \sum_{i} S_i^x - \frac{1}{2} \sum_{ij} J_{ij} S_i^z S_j^z$$

em que \vec{S}_i são spins $\frac{1}{2}$, com interacção J_{ij} segundo o eixo dos z apenas, e Γ é o campo magnético transverso, segundo o eixo dos x.

- a) Faça a teoria de campo médio e escreva as equações de estado e constitutiva.
- b) Para $\Gamma > \Gamma_C(T)$ os spins estão completamente polarizados pelo campo magnético, i.e. estão orientados segundo o eixo dos x. No entanto, se reduzirmos o campo magnético, teremos para $\Gamma < \Gamma_C(T)$ o aparecimento de uma componente da magnetização (ou do campo efectivo) também segundo o eixo dos z, devido à interacção entre os spins, havendo pois uma transição de fase, em que $< S^z >$ é o parâmetro de ordem. Particularize os resultados da alínea a) para cada uma destas duas fases, e indique as equações que permitem a sua caracterização. Sugestão: use o ângulo θ da magnetização ou do campo efectivo com o eixo dos x para caracterizar estes vectores.
- c) Obtenha a equação da linha $\Gamma_C(T)$ de separação entre as duas fases. Obtenha os seus pontos limites, dados por $\Gamma_C(0)$ e por T_C , tal que $\Gamma_C(T_C) = 0$.

Qual a dependência desta temperatura T_C com a dimensão d do espaço (admita que as interacções são entre primeiros vizinhos apenas). Qual o seu valor para d=1? Como justifica esse valor?

4. Considere a energia de Landau para uma transição de fase, dada por:

$$\mathcal{H} = \frac{1}{2} |\nabla \phi|^2 + \frac{1}{2} r \phi^2 + \frac{1}{4} u \phi^4 - H \phi,$$

- a) Calcule os expoentes críticos α , β , γ , δ , ν e η , na teoria de campo médio ou de Landau (expoentes clássicos).
- b) Tome em conta as flutuações gaussianas, para avaliar o valor médio do quadrado das flutuações do parâmetro de ordem e compare com o quadrado do valor do parâmetro de ordem, dado pela teoria de Landau.

Qual a dimensão crítica superior, abaixo da qual os expoentes críticos clássicos deixam de ser válidos?

Qual a dimensão crítica inferior, abaixo da qual as flutuações destroem a transição de fase?