New results on charmonium physics from BaBar.

Antimo Palano INFN and University of Bari Representing the BABAR Collaboration

Summary

- Dalitz plot Analysis of $\eta_c \to K^+ K^- \eta$ and $\eta_c \to K^+ K^- \pi^0$ in two-photon interactions.
- Search for new resonances in $B \to J/\psi \, \phi K$ decays.

Workshop on Unquenched Hadron Spectroscopy: Non-Perturbative Models and Methods of QCD vs. Experiment 15 September 2014 at the University of Coimbra, Portugal Coimbra, September 2, 2014

Study of $K^+K^-\eta$ and $K^+K^-\pi^0$ final states in two photon interactions.

□ Many η_c and $\eta_c(2S)$ decays are still missing or studied with low statistics. □ We make use of two-photon interactions to produce charmonium states. □ We select events in which the e^+ and e^- beam particles are scattered at small angles and are undetected in the detector.

 \Box This implies that only resonances with $J^{PC} = 0^{\pm +}, 2^{\pm +}, 3^{++}, 4^{\pm +}...$ can be produced.

 \Box In addition the $K^+K^-\eta$ and $K^+K^-\pi^0$ states cannot be in a $J^P = 0^+$ state.

Physics Motivations.

 \square No Dalitz analysis has been ever published on η_c $(J^{PC} = 0^{-+})$ three-body decays.

 \Box Low mass charmonium states decay predominantly to multi-body light mesons final states, and thus offer great opportunities for studying light meson spectroscopy.

 $\Box \eta_c$ decays are useful for obtaining new information on the scalar mesons.

 \Box It is interesting therefore to look at η_c decays.

 \Box In this analysis we study the following two-photon production processes (arXiv:1403.7051):

$$\begin{array}{c} \gamma\gamma \to K^+K^-\eta \\ & \to \gamma\gamma \\ & \to \pi^+\pi^-\pi^0 \end{array}$$
$$\gamma\gamma \to K^+K^-\pi^0 \end{array}$$

Data selection.

 \square For each final state we select events having the exact number of expected charged tracks.

□ Due to soft photons background we allow the presence of extra low energy γ 's. □ We select two-photon events by requiring the conservation of the transverse momentum p_T . We require $p_T < 0.05 \text{ GeV/c}$

 $\Box p_T$ distributions for the three reactions.

 \Box Good agreement with MC simulations.

Experimental resolution.

 \Box We make use of MC simulations to obtain the experimental resolution for each channel.

 \square Resolution functions fitted with the sum of a Crystal Ball and a Gaussian function.

 \Box r.m.s. values at the η_c mass are 15, 14, and 21 MeV/ c^2 .

ηK^+K^- mass spectra

 \Box Mass spectra for the two η decay modes.

 \Box Strong η_c and some $\eta_c(2S)$ signal. First observations.

Mass spectra.

 $\Box K^+K^-\eta$ mass spectrum summed over the two η decay modes and $K^+K^-\pi^0$ mass spectrum.

 \Box Strong η_c signals. Evidence for $\eta_c(2S)$ and χ_{c2} . Small J/ψ signal from residual ISR background.

 \Box Charmonium signals fitted using Breit-Wigner functions convolved with the resolution functions.

Efficiency.

 \Box Fitted detection efficiency in the $\cos \theta$ vs. $m(K^+K^-)$ plane, where θ is the K^+ helicity angle.

 \Box Efficiency distributions for the three reactions in the η_c mass region.

 \Box Efficiency fitted using Legendre polynomials moments. \Box Some efficiency loss due to low momentum kaons or π^0 .

Fitted masses.

Resonance	Mass (MeV/c^2)	$\Gamma ~({ m MeV})$	
$\eta_c \to K^+ K^- \eta$	$2984.1 \pm 1.1 \pm 2.1$	$34.8 \pm 3.1 \pm 4.0$	
$\eta_c \to K^+ K^- \pi^0$	$2979.8 \pm 0.8 \pm 3.5$	$25.2 \pm 2.6 \pm 2.4$	
$\eta_c(2S) \to K^+ K^- \eta$	$3635.1 \pm 5.8 \pm 2.1$	11.3 (fixed)	
$\eta_c(2S) \to K^+ K^- \pi^0$	$3637.0 \pm 5.7 \pm 3.4$	11.3 (fixed)	

 \square Event yields and significances for the charmonium states.

Channel	Event yield	Significance
$\eta_c \to K^+ K^- \pi^0$	$4518 \pm 131 \pm 50$	32σ
$\eta_c \to K^+ K^- \eta \ (\eta \to \gamma \gamma)$	$853 \pm 38 \pm 11$	21σ
$\eta_c \to K^+ K^- \eta \ (\eta \to \pi^+ \pi^- \pi^0)$	$292\pm20\pm7$	14σ
$\eta_c(2S) \to K^+ K^- \pi^0$	$178 \pm 29 \pm 39$	3.7σ
$\eta_c(2S) \to K^+ K^- \eta$	$47 \pm 9 \pm 3$	4.9σ
$\chi_{c2} \to K^+ K^- \pi^0$	$88\pm27\pm23$	2.5σ
$\chi_{c2} \to K^+ K^- \eta$	$2\pm5\pm2$	0.0σ

Branching fractions.

 \Box We compute the ratios of the branching fractions for η_c and $\eta_c(2S)$ decays to the $K^+K^-\eta$ final state compared to the respective branching fractions to the $K^+K^-\pi^0$ final state.

$$\mathcal{R} = \frac{\mathcal{B}(\eta_c/\eta_c(2S) \to K^+ K^- \eta)}{\mathcal{B}(\eta_c/\eta_c(2S) \to K^+ K^- \pi^0)} = \frac{N_{K^+ K^- \eta}}{N_{K^+ K^- \pi^0}} \frac{\epsilon_{K^+ K^- \pi^0}}{\epsilon_{K^+ K^- \eta}} \frac{1}{\mathcal{B}_{\eta}}$$

 \Box Presence of non-negligible backgrounds in the η_c signals, which have different distributions in the Dalitz plot

 \Box We perform a sideband subtraction by assigning a weight $w = 1/\epsilon(m, \cos \theta)$ to events in the signal region and a negative weight $w = -f/\epsilon(m, \cos \theta)$ to events in the sideband regions.

 \Box The weight in the sideband regions is scaled down by the factor f to match the fitted η_c signal/background ratio.

 \square We obtain the weighted efficiencies as

$$\epsilon_{K+K-\eta/\pi^0} = \frac{\sum_{i=1}^N f_i}{\sum_{i=1}^N f_i/\epsilon(m_i, \cos \theta_i)}$$

where N indicates the number of events in the signal+sidebands regions.

Branching fractions.

 \Box We obtain:

$$\mathcal{R}(\eta_c) = \frac{\mathcal{B}(\eta_c \to K^+ K^- \eta)}{\mathcal{B}(\eta_c \to K^+ K^- \pi^0)} = 0.571 \pm 0.025 \pm 0.051$$

 \Box Consistent with the BESIII measurement of 0.46 ± 0.23 (6.7 ± 3.2 events for $\eta_c \to K^+ K^- \eta$) (Phys.Rev. D 86, 092009 (2012).

 \square We also obtain:

$$\mathcal{R}(\eta_c(2S)) = \frac{\mathcal{B}(\eta_c(2S) \to K^+ K^- \eta)}{\mathcal{B}(\eta_c(2S) \to K^+ K^- \pi^0)} = 0.82 \pm 0.21 \pm 0.27$$

Dalitz plots.

 $\Box \eta_c \rightarrow \eta K^+ K^-$ Dalitz plot. 1161 events with $(76.1 \pm 1.3)\%$ purity. \Box Evidence for $f_0(1500)$, $f_0(1710)$ and $K_0^*(1430)$.

 $\Box \ \eta_c \to \pi^0 K^+ K^- \text{ Dalitz plot. 6710 events with } (55.2 \pm 0.6)\% \text{ purity.}$ $\Box \text{ Evidence for } a_0(980), \ a_0(1450), \ a_2(1310) \text{ and } K_0^*(1430).$ $\Box \ K^*(890) \text{ mostly from background.}$

Dalitz plot analysis.

- Unbinned Maximum Likelihood fit.
- Amplitudes parametrized as in a standard $pseudoscalar \rightarrow three \ pseudoscalars$ Dalitz analysis.
- Full interference allowed among the amplitudes.
- No evidence for interference between signal and background. Therefore the sidebands fitted using the sum of incoherent resonances.
- Background in the signal region estimated interpolating the sidebands.
- A Non-Resonant contribution (NR) is included in the fit.
- The fit quality is tested by dividing the Dalitz plot in N_{cells} cells and computing:

$$\chi^{2} = \sum_{i=1}^{N_{cells}} (N_{obs}^{i} - N_{exp}^{i})^{2} / N_{exp}^{i}$$

where N_{obs}^{i} and N_{exp}^{i} are event yields from data and simulation, respectively. Denoting by *n* the number of free parameters in the fit, we label $\nu = N_{cells} - n$.

$\eta_c \to \eta K^+ K^-$ Dalitz plot analysis.

Results from the Dalitz analysis and fit projections.
Charge conjugated amplitudes symmetrized.

Final state	Fraction $\%$	Phase (radians)
$f_0(1500)\eta$	$23.7 \pm 7.0 \pm 1.8$	0.
$f_0(1710)\eta$	$8.9 \pm 3.2 \pm 0.4$	$2.2 \pm 0.3 \pm 0.1$
$f_0(2200)\eta$	$11.2 \pm 2.8 \pm 0.5$	$2.1 \pm 0.3 \pm 0.1$
$f_0(1350)\eta$	$5.0 \pm 3.7 \pm 0.5$	$0.9 \pm 0.2 \pm 0.1$
$f_0(980)\eta$	$10.4 \pm \ 3.0 \pm \ 0.5$	$-0.3 \pm 0.3 \pm 0.1$
$f_2'(1525)\eta$	$7.3 \pm 3.8 \pm 0.4$	$1.0 \pm 0.1 \pm 0.1$
$K_0^*(1430)^+K^-$	$16.4 \pm 4.2 \pm 1.0$	$2.3 \pm 0.2 \pm 0.1$
$K_0^*(1950)^+K^-$	$2.1 \pm 1.3 \pm 0.2$	$-0.2 \pm 0.4 \pm 0.1$
NR	$15.5 \pm 6.9 \pm 1.0$	$-1.2 \pm 0.4 \pm 0.1$
Sum	$100.0 \pm 11.2 \pm 2.5$	
χ^2/ u	87/65	

□ Largest amplitudes are $f_0(1500)\eta$ and $K_0^*(1430)K$. □ The description of the data is adequate.

- Reputes from the Daniz analysis and he projections.					
Final state	Fraction $\%$			Phase (radians)	
$K_0^*(1430)^+K^-$	$33.8~\pm$	$1.9~\pm$	0.4	0.	
$K_0^*(1950)^+K^-$	$6.7~\pm$	1.0 \pm	0.3	$-0.67 \pm 0.07 \pm 0.03$	
$K_2^*(1430)^+K^-$	$6.8~\pm$	1.4 \pm	0.3	$-1.67 \pm 0.07 \pm 0.03$	
$a_0(980)\pi^0$	$1.9~\pm$	$0.1~\pm$	0.2	$0.38 \pm 0.24 \pm 0.02$	
$a_0(1450)\pi^0$	10.0 \pm	$2.4~\pm$	0.8	$-2.4 \pm 0.05 \pm 0.03$	
$a_2(1320)\pi^0$	$2.1~\pm$	$0.1~\pm$	0.2	$0.77 \pm 0.20 \pm 0.04$	
NR	24.4 \pm	$2.5~\pm$	0.6	$1.49 \pm 0.07 \pm 0.03$	
Sum	$85.8~\pm$	$3.6 \pm$	1.2		
χ^2/ u		212/130			

Results from the Dalitz analysis and fit projections

- Largest amplitudes are $K_0^*(1430)K$ and $a_0(1450)\pi^0$.
- $K_1^*(890)K$ amplitude consistent with zero.
- Spin-one resonances consistent to originate entirely from background.
- Some residual background from $\gamma \gamma \to K^+ K^-$.
- The isobar model does not fit very well the data.

 $\eta_c \to \pi^0 K^+ K^-$ Dalitz analysis.

The $K_0^*(1430)$ parameters.

 \Box In the $\eta_c \to \pi^0 K^+ K^-$ Dalitz plot analysis we scan the likelihood as a function of the $K_0^*(1430)$ mass and width.

 \Box We obtain:

$$m(K_0^*(1430)) = 1438 \pm 8 \pm 4 \text{ MeV}/c^2$$

$$\Gamma(K_0^*(1430)) = 210 \pm 20 \pm 12 \text{ MeV}$$

$K_0^*(1430)$ branching fraction.

 \Box First observation of $K_0^*(1430) \to K\eta$.

 \Box The observation of $K_0^*(1430)$ in both $K\eta$ and $K\pi^0$ decay modes allows a measurement of the relative branching fraction.

 \Box The Dalitz plot analysis of $\eta_c \to K^+ K^- \eta$ decay gives a total $K_0^* (1430)^+ K^-$ contribution of

$$f_{\eta K} = 0.164 \pm 0.042 \pm 0.010$$

 \Box The Dalitz plot analysis of the $\eta_c \to K^+ K^- \pi^0$ decay mode gives a total $K_0^*(1430)^+ K^-$ contribution of

$$f_{\pi^0 K} = 0.338 \pm 0.019 \pm 0.004$$

 \Box Using the measurement of $\mathcal{R}(\eta_c)$, we obtain the $K_0^*(1430)$ branching ratio

$$\frac{\mathcal{B}(K_0^*(1430) \to \eta K)}{\mathcal{B}(K_0^*(1430) \to \pi K)} = \mathcal{R}(\eta_c) \frac{f_{\eta K}}{f_{\pi K}} = 0.092 \pm 0.025^{+0.010}_{-0.025}$$

where $f_{\pi K}$ denotes $f_{\pi^0 K}$ after correcting for the $K^0 \pi$ decay mode. \Box Asymmetric systematic uncertainty.

$K_0^*(1430)$ branching fraction.

 \Box We note that the amplitude labelled "NR" may be considered to represent an S-wave, similar to that of the $K_0^*(1430)^+K^-$ amplitudes

 \Box We remove the non-resonant contribution in both the $\eta_c \to K^+ K^- \eta$ and

 $\eta_c \to K^+ K^- \pi^0$ Dalitz plot analyses.

 \Box We obtain significant variation of the $K_0^*(1430)^+K^-$ fraction in the $\eta_c \to K^+K^-\pi^0$ final state (\approx a factor 2) which is included in the evaluation of the systematic uncertainty.

 \Box The LASS experiment studied the reaction $K^-p \to K^-\eta p$ at 11 GeV/c. The $K^-\eta$ mass spectrum is dominated by the presence of the $K_3^*(1780)$ resonance with no evidence for $K_0^*(1430) \to K\eta$ decay.

 \Box However, from PDG:

 $\Gamma(K_0^*(1430) \to K\pi) / \Gamma(K_0^*(1430)) = 0.93 \pm 0.04 \pm 0.09$

 \Box Not in conflict with the presence of a small branching fraction for the $K\eta$ decay mode.

Implications for the pseudoscalar meson mixing angle.

 \square No evidence for $K_0^*(1430)$ or $K_2^*(1430)$ production in the reaction $K^-p \to K^-\eta p$ at 11 by LASS experiment with an upper limit

 $\mathcal{B}(K_2^*(1430) \to K\eta) / \mathcal{B}(K_2^*(1430) \to K\pi) < 0.92\% \ at \ 95\% \ C.L.$

 \Box This small value is understood in the context of an SU(3) model with octet-singlet mixing of the η and η' .

 \Box For even angular momentum l (i.e., D-type coupling), it can be shown that a consequence of the resulting $K^* \bar{K} \eta$ couplings is

$$R_l = \frac{\mathcal{B}(K_l^* \to K\eta)}{\mathcal{B}(K_l^* \to K\pi)} = \frac{1}{9} (\cos\theta_p + 2 \cdot \sqrt{2} \cdot \sin\theta_p)^2 \cdot (q_{K\eta}/q_{K\pi})^{2l+1}$$

where $q_{K\eta}$ $(q_{K\pi})$ is the kaon momentum in the $K\eta$ $(K\pi)$ rest frame at the K^* mass and θ_p is the SU(3) singlet-octet mixing angle for the pseudoscalar meson nonet. \Box We note that R_l equals zero if

$$\tan \theta_p = -[1/(2 \cdot \sqrt{2})](i.e., \theta_p = -19.7^{\circ})$$

Implications for the pseudoscalar meson mixing angle.

 \Box For l = 2, the upper limit $R_2 = 0.0092$ corresponds to $\theta_p = -9.0^{\circ}$ and the central value yields $\theta_p = -11.4^{\circ}$.

□ In the present analysis, we obtain the value $R_0 = 0.092^{+0.027}_{-0.035}$. □ The corresponding value of θ_p is:

$$\theta_p = (3.1^{+3.3}_{-5.0})^{\circ}$$

which differs by about 2.9 standard deviations from the result obtained from the $K_2^*(1430)$ branching ratio.

□ However, in Feldmann et al. (Int. J. Mod. Phys. A 15, 159 (2000)), it is argued that it is necessary to consider separate octet and singlet mixing angles for the pseudoscalar mesons.

Search for resonances decaying to $J/\psi \phi$.

 \Box Several experiments, CDF, CMS and D0 observe structures in the $J/\psi \phi$ mass spectrum from $B^+ \to J/\psi \phi K^+$.

 \Box An early study from LHCb do no confirm these findings.

□ The interest is that these resonances may be some type of multiquark states. □ $J/\psi \phi$ mass spectrum from CMS.

A summary of experimental results.

Search for resonances decaying to $J/\psi K^+K^-$ in B meson decay.

 \Box Use of the full BABARY(4S) dataset, 424 fb^{-1} (arXiv:1407.7244) (charge conjugation is implied).

We study the reactions $B^+ \to J/\psi K^+ K^- K^+$ and $B^0 \to J/\psi K^+ K^- K_S^0$. ΔE signals after requiring $m_{ES} > 5.27 \,\mathrm{GeV}/c^2$.

Selection of $B \to J/\psi \phi K$.

 $\Box K^+K^- \text{ mass spectra for } B^+ \to J/\psi K^+K^-K^+ \text{ and } B^0 \to J/\psi K^+K^-K_S^0.$ $\Box \text{ Clear } \phi \text{ signals.}$

Branching fractions.

 $\Box J/\psi X$ yields and branching fractions.

 \Box Each event is weighted by the inverse of the efficiency on the Dalitz plot.

B channel	Event yield	$\mathcal{B}~(imes 10^{-5})$
$B^+_{\ KKK}$	290 ± 22	$6.91{\pm}0.52$ (stat) ${\pm}0.28$ (sys)
$B^+_{\phi K}$	189 ± 1	$5.06 \pm 0.37 \text{ (stat)} \pm 0.15 \text{ (sys)}$
$B^0_{\ \ KKK_S}$	68 ± 13	$3.35 \pm 0.66 \text{ (stat)} \pm 0.15 \text{ (sys)}$
$B^0_{\ \phi K_S}$	41 ± 7	$2.13 \pm 0.36 \text{ (stat)} \pm 0.06 \text{ (sys)}$
$B^0_{\ \phi}$	6 ± 4	< 0.101 ≥ 10

 $\Box \Delta E$ signal for $B^0 \to J/\psi \phi$ candidates: no signal.

Branching fractions.

 \Box We compute the ratios:

$$R_{+} = \frac{\mathcal{B}(B^{+} \to J/\psi K^{+} K^{-} K^{+})}{\mathcal{B}(B^{+} \to J/\psi \phi K^{+})} = 1.39 \pm 0.15 \pm 0.07$$
$$R_{0} = \frac{\mathcal{B}(B^{0} \to J/\psi K^{+} K^{-} K^{0}_{S})}{\mathcal{B}(B^{0} \to J/\psi \phi K^{0}_{S})} = 1.54 \pm 0.40 \pm 0.08$$

and they are consistent with being equal within the uncertainties.

 \Box For the ratios:

$$R_{\phi} = \frac{\mathcal{B}(B^0 \to J/\psi \phi K_S^0)}{\mathcal{B}(B^+ \to J/\psi \phi K^+)} = 0.48 \pm 0.09 \pm 0.02$$

$$R_{2K} = \frac{\mathcal{B}(B^0 \to J/\psi K^+ K^- K_S^0)}{\mathcal{B}(B^+ \to J/\psi K^+ K^- K^+)} = 0.52 \pm 0.09 \pm 0.03$$

we find values in agreement with the expectation of the spectator quark model $(R_{\phi} \sim R_{2K} \sim 0.5).$

Efficiency.

 \Box We compute the efficiency on the Dalitz plot by generating and reconstructing phase space MC events.

 \Box Efficiency on the Dalitz plot for $B^+ \to J/\psi \phi K^+$ and $B^0 \to J/\psi \phi K_S^0$.

 \Box The lower efficiency at low $J/\psi\phi$ mass is due to the lower reconstruction of low kaon momentum in the laboratory frame, as a result of energy loss in the beampipe and SVT material.

Search for resonances in the $J/\psi\phi$ mass spectra.

 \Box We search for the resonances claimed by the CDF collaboration by performing an unbinned maximum likelihood fit for $B \to J/\psi \phi K$ decays.

- We model the resonances using S-wave relativistic Breit-Wigner functions with parameters fixed to the CDF values.
- The non-resonant contributions are represented by a constant term (PHSP) and no interference is allowed between the fit components.
- We estimate the background contributions from the ΔE sidebands and incorporated into the non-resonant PHSP term.
- The decay of a pseudoscalar meson to two vector states contains high spin contributions which could generate non-uniform angular distributions.
- However, due to the limited data sample we do not include such angular terms, and assume that the resonances decay isotropically.
- The amplitudes are normalized using PHSP MC generated events.
- The fit functions are weighted by the the two-dimensional efficiency computed on the Dalitz plots.

Search for resonances in the $J/\psi\phi$ mass spectra.

 \Box Fit projections on the $J/\psi\phi$ mass spectra in the hypothesis of the presence of two X(4140) and X(4270) resonances.

Results from the fits.

 \Box Fits to the $B \to J/\psi \phi K$ Dalitz plot. For each fit, the table gives the fit fraction for each resonance, and the 2D and 1D χ^2 values.

Channel	$f_{X(4140)}(\%)$	$f_{X(4270)}(\%)$	$2 \mathrm{D} \ \chi^2 / \nu$	1D χ^2/ν
B^+	9.2 ± 3.3	10.6 ± 4.8	12.7/12	6.5/20
	9.2 ± 2.9	0.	17.4/13	15.0/17
	0.	10.0 ± 4.8	20.7/13	19.3/19
	0.	0.	26.4/14	34.2/18
$B^0 + B^+$	7.3 ± 3.8	12.0 ± 4.9	8.5/12	15.9/19

 \Box We obtain the following background-corrected fractions for B^+ :

 $f_{X(4140)} = (9.2 \pm 3.3 \pm 4.7)\%, \ f_{X(4270)} = (10.6 \pm 4.8 \pm 7.1)\%$

 \Box Combining statistical and systematic uncertainties in quadrature, we obtain significances of 1.6 and 1.2 σ for X(4140) and X(4270), respectively.

Upper limits.

 \Box We obtain the ULs at 90% c.l.:

 $\mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi)/\mathcal{B}(B^+ \to J/\psi \phi K^+) < 0.135$ $\mathcal{B}(B^+ \to X(4270)K^+) \times \mathcal{B}(X(4270) \to J/\psi \phi)/\mathcal{B}(B^+ \to J/\psi \phi K^+) < 0.184$ $\Box \text{ The } X(4140) \text{ limit may be compared with the CDF measurement of}$ $0.149 \pm 0.039 \pm 0.024 \text{ and the LHCb limit of } 0.07.$

 \Box The X(4270) limit may be compared with the LHCb limit of 0.08.

 \square Similar results are obtained using the CMS measurements.

Conclusions.

 \Box We obtain first observation of new η_c and $\eta_c(2S)$ decay modes in the ηK^+K^- and $\pi^0 K^+K^-$ produced in two-photon interactions.

 \Box We perform the first Dalitz plot analyses of η_c decays to three-body. These decays are dominated by scalar meson resonances.

 \square We report the first observation of $K_0^*(1430) \to K\eta$, measure its parameters and its branching fraction.

 \Box We obtain a new estimate of the pseudoscalars mixing angle which does not agree well with measurements obtained from the study of spin-2 resonances.

 \Box The isobar model for $K_0^*(1430)$ does not describe well the Dalitz plot of $\eta_c \to K^+ K^- \pi^0$. Alternative models need to be tested.

Conclusions.

 \Box We study the decays $B^+\to J/\psi\phi K^+,~B^0\to J/\psi\phi K^0_S$ and measure new branching fractions.

- \Box We search for new resonances in the $J/\psi\phi$ mass spectrum from B decays.
- \Box We find that the phase-space uniform distribution does not describe the data well.
- \Box We derive upper limits for the production of X(4140) and X(4270).