New results on charmonium physics from BaBar.

Antimo Palano
 INFN and University of Bari
 Representing the BABAR Collaboration

Summary

- Dalitz plot Analysis of $\eta_{c} \rightarrow K^{+} K^{-} \eta$ and $\eta_{c} \rightarrow K^{+} K^{-} \pi^{0}$ in two-photon interactions.
- Search for new resonances in $B \rightarrow J / \psi \phi K$ decays.

Workshop on Unquenched Hadron Spectroscopy:
Non-Perturbative Models and Methods of QCD vs. Experiment
15 September 2014 at the University of Coimbra, Portugal
Coimbra, September 2, 2014

Study of $K^{+} K^{-} \eta$ and $K^{+} K^{-} \pi^{0}$ final states in two photon interactions.

\square Many η_{c} and $\eta_{c}(2 S)$ decays are still missing or studied with low statistics.
\square We make use of two-photon interactions to produce charmonium states.
\square We select events in which the e^{+}and e^{-}beam particles are scattered at small angles and are undetected in the detector.

\square This implies that only resonances with $J^{P C}=0^{ \pm+}, 2^{ \pm+}, 3^{++}, 4^{ \pm+} \ldots$ can be produced.
\square In addition the $K^{+} K^{-} \eta$ and $K^{+} K^{-} \pi^{0}$ states cannot be in a $J^{P}=0^{+}$state.

Physics Motivations.

\square No Dalitz analysis has been ever published on $\eta_{c}\left(J^{P C}=0^{-+}\right)$three-body decays.Low mass charmonium states decay predominantly to multi-body light mesons final states, and thus offer great opportunities for studying light meson spectroscopy.η_{c} decays are useful for obtaining new information on the scalar mesons.It is interesting therefore to look at η_{c} decays.In this analysis we study the following two-photon production processes (arXiv:1403.7051):

$$
\begin{aligned}
\gamma \gamma \rightarrow K^{+} K^{-} \eta & \\
& \rightarrow \gamma \gamma \\
& \rightarrow \pi^{+} \pi^{-} \pi^{0} \\
\gamma \gamma \rightarrow K^{+} & K^{-} \pi^{0}
\end{aligned}
$$

Data selection.

For each final state we select events having the exact number of expected charged tracks.\square Due to soft photons background we allow the presence of extra low energy γ 's.We select two-photon events by requiring the conservation of the transverse momentum p_{T}. We require $p_{T}<0.05 \mathrm{GeV} / \mathrm{c}$ $\square p_{T}$ distributions for the three reactions.

\square Good agreement with MC simulations.

Experimental resolution.

\square We make use of MC simulations to obtain the experimental resolution for each channel.Resolution functions fitted with the sum of a Crystal Ball and a Gaussian function.

$$
\eta \rightarrow \gamma \gamma
$$

$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
r.m.s. values at the η_{c} mass are 15,14 , and $21 \mathrm{MeV} / c^{2}$.

$\eta K^{+} K^{-}$mass spectra

\square Mass spectra for the two η decay modes.
Strong η_{c} and some $\eta_{c}(2 S)$ signal. First observations.

Mass spectra.

$\square K^{+} K^{-} \eta$ mass spectrum summed over the two η decay modes and and $K^{+} K^{-} \pi^{0}$ mass spectrum.
Strong η_{c} signals. Evidence for $\eta_{c}(2 S)$ and $\chi_{c 2}$. Small J / ψ signal from residual ISR background.
\square Charmonium signals fitted using Breit-Wigner functions convolved with the resolution functions.

Efficiency.

\square Fitted detection efficiency in the $\cos \theta$ vs. $m\left(K^{+} K^{-}\right)$plane, where θ is the K^{+} helicity angle.Efficiency distributions for the three reactions in the η_{c} mass region.
Efficiency fitted using Legendre polynomials moments.Some efficiency loss due to low momentum kaons or π^{0}.

Fitted masses.

Resonance	Mass $\left(\mathrm{MeV} / c^{2}\right)$	$\Gamma(\mathrm{MeV})$
$\eta_{c} \rightarrow K^{+} K^{-} \eta$	$2984.1 \pm 1.1 \pm 2.1$	$34.8 \pm 3.1 \pm 4.0$
$\eta_{c} \rightarrow K^{+} K^{-} \pi^{0}$	$2979.8 \pm 0.8 \pm 3.5$	$25.2 \pm 2.6 \pm 2.4$
$\eta_{c}(2 S) \rightarrow K^{+} K^{-} \eta$	$3635.1 \pm 5.8 \pm 2.1$	11.3 (fixed)
$\eta_{c}(2 S) \rightarrow K^{+} K^{-} \pi^{0}$	$3637.0 \pm 5.7 \pm 3.4$	11.3 (fixed)

\square Event yields and significances for the charmonium states.

Channel	Event yield	Significance
$\eta_{c} \rightarrow K^{+} K^{-} \pi^{0}$	$4518 \pm 131 \pm 50$	32σ
$\eta_{c} \rightarrow K^{+} K^{-} \eta(\eta \rightarrow \gamma \gamma)$	$853 \pm 38 \pm 11$	21σ
$\eta_{c} \rightarrow K^{+} K^{-} \eta\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	$292 \pm 20 \pm 7$	14σ
$\eta_{c}(2 S) \rightarrow K^{+} K^{-} \pi^{0}$	$178 \pm 29 \pm 39$	3.7σ
$\eta_{c}(2 S) \rightarrow K^{+} K^{-} \eta$	$47 \pm 9 \pm 3$	4.9σ
$\chi_{c 2} \rightarrow K^{+} K^{-} \pi^{0}$	$88 \pm 27 \pm 23$	2.5σ
$\chi_{c 2} \rightarrow K^{+} K^{-} \eta$	$2 \pm 5 \pm 2$	0.0σ

Branching fractions.

\square We compute the ratios of the branching fractions for η_{c} and $\eta_{c}(2 S)$ decays to the $K^{+} K^{-} \eta$ final state compared to the respective branching fractions to the $K^{+} K^{-} \pi^{0}$ final state.

$$
\mathcal{R}=\frac{\mathcal{B}\left(\eta_{c} / \eta_{c}(2 S) \rightarrow K^{+} K^{-} \eta\right)}{\mathcal{B}\left(\eta_{c} / \eta_{c}(2 S) \rightarrow K^{+} K^{-} \pi^{0}\right)}=\frac{N_{K^{+} K^{-} \eta}}{N_{K^{+} K^{-} \pi^{0}}} \frac{\epsilon_{K^{+} K^{-} \pi^{0}}}{\epsilon_{K^{+} K^{-} \eta}} \frac{1}{\mathcal{B}_{\eta}}
$$

\square Presence of non-negligible backgrounds in the η_{c} signals, which have different distributions in the Dalitz plot
\square We perform a sideband subtraction by assigning a weight $w=1 / \epsilon(m, \cos \theta)$ to events in the signal region and a negative weight $w=-f / \epsilon(m, \cos \theta)$ to events in the sideband regions.
\square The weight in the sideband regions is scaled down by the factor f to match the fitted η_{c} signal/background ratio.
\square We obtain the weighted efficiencies as

$$
\epsilon_{K^{+} K^{-} \eta / \pi^{0}}=\frac{\sum_{i=1}^{N} f_{i}}{\sum_{i=1}^{N} f_{i} / \epsilon\left(m_{i}, \cos \theta_{i}\right)}
$$

where N indicates the number of events in the signal+sidebands regions.

Branching fractions.

\square We obtain:

$$
\mathcal{R}\left(\eta_{c}\right)=\frac{\mathcal{B}\left(\eta_{c} \rightarrow K^{+} K^{-} \eta\right)}{\mathcal{B}\left(\eta_{c} \rightarrow K^{+} K^{-} \pi^{0}\right)}=0.571 \pm 0.025 \pm 0.051
$$

\square Consistent with the BESIII measurement of 0.46 ± 0.23 (6.7 ± 3.2 events for $\eta_{c} \rightarrow K^{+} K^{-} \eta$)(Phys.Rev. D 86, 092009 (2012).
\square We also obtain:

$$
\mathcal{R}\left(\eta_{c}(2 S)\right)=\frac{\mathcal{B}\left(\eta_{c}(2 S) \rightarrow K^{+} K^{-} \eta\right)}{\mathcal{B}\left(\eta_{c}(2 S) \rightarrow K^{+} K^{-} \pi^{0}\right)}=0.82 \pm 0.21 \pm 0.27
$$

Dalitz plots.

$\eta_{c} \rightarrow \eta K^{+} K^{-}$Dalitz plot. 1161 events with (76.1 ± 1.3)\% purity.\square Evidence for $f_{0}(1500), f_{0}(1710)$ and $K_{0}^{*}(1430)$.

$\square \eta_{c} \rightarrow \pi^{0} K^{+} K^{-}$Dalitz plot. 6710 events with (55.2 ± 0.6) \% purity.
\square Evidence for a_{0} (980), a_{0} (1450), a_{2} (1310) and K_{0}^{*} (1430).$K^{*}(890)$ mostly from background.

Dalitz plot analysis.

- Unbinned Maximum Likelihood fit.
- Amplitudes parametrized as in a standard pseudoscalar \rightarrow three pseudoscalars Dalitz analysis.
- Full interference allowed among the amplitudes.
- No evidence for interference between signal and background. Therefore the sidebands fitted using the sum of incoherent resonances.
- Background in the signal region estimated interpolating the sidebands.
- A Non-Resonant contribution $(N R)$ is included in the fit.
- The fit quality is tested by dividing the Dalitz plot in $N_{\text {cells }}$ cells and computing:

$$
\chi^{2}=\sum_{i=1}^{N_{\text {cells }}}\left(N_{o b s}^{i}-N_{e x p}^{i}\right)^{2} / N_{e x p}^{i}
$$

where $N_{o b s}^{i}$ and $N_{\text {exp }}^{i}$ are event yields from data and simulation, respectively. Denoting by n the number of free parameters in the fit, we label $\nu=N_{\text {cells }}-n$.

$\eta_{c} \rightarrow \eta K^{+} K^{-}$Dalitz plot analysis.

Results from the Dalitz analysis and fit projections.\square Charge conjugated amplitudes symmetrized.

Final state	Fraction $\%$	Phase (radians)
$f_{0}(1500) \eta$	$23.7 \pm 7.0 \pm 1.8$	0.
$f_{0}(1710) \eta$	$8.9 \pm 3.2 \pm 0.4$	$2.2 \pm 0.3 \pm 0.1$
$f_{0}(2200) \eta$	$11.2 \pm 2.8 \pm 0.5$	$2.1 \pm 0.3 \pm 0.1$
$f_{0}(1350) \eta$	$5.0 \pm 3.7 \pm 0.5$	$0.9 \pm 0.2 \pm 0.1$
$f_{0}(980) \eta$	$10.4 \pm 3.0 \pm 0.5$	$-0.3 \pm 0.3 \pm 0.1$
$f_{2}^{\prime}(1525) \eta$	$7.3 \pm 3.8 \pm 0.4$	$1.0 \pm 0.1 \pm 0.1$
$K_{0}^{*}(1430)^{+} K^{-}$	$16.4 \pm 4.2 \pm 1.0$	$2.3 \pm 0.2 \pm 0.1$
$K_{0}^{*}(1950)^{+} K^{-}$	$2.1 \pm 1.3 \pm 0.2$	$-0.2 \pm 0.4 \pm 0.1$
$N R$	$15.5 \pm 6.9 \pm 1.0$	$-1.2 \pm 0.4 \pm 0.1$
Sum	$100.0 \pm 11.2 \pm 2.5$	
χ^{2} / ν	$87 / 65$	

Largest amplitudes are $f_{0}(1500) \eta$ and $K_{0}^{*}(1430) K$.The description of the data is adequate.

$$
\eta_{c} \rightarrow \pi^{0} K^{+} K^{-} \text {Dalitz analysis. }
$$

Results from the Dalitz analysis and fit projections.

Final state	Fraction $\%$		Phase (radians)	
$K_{0}^{*}(1430)^{+} K^{-}$	$33.8 \pm$	$1.9 \pm$	0.4	0.
$K_{0}^{*}(1950)^{+} K^{-}$	$6.7 \pm$	$1.0 \pm$	0.3	$-0.67 \pm 0.07 \pm 0.03$
$K_{2}^{*}(1430)^{+} K^{-}$	$6.8 \pm$	$1.4 \pm$	0.3	$-1.67 \pm 0.07 \pm 0.03$
$a_{0}(980) \pi^{0}$	$1.9 \pm$	$0.1 \pm$	0.2	$0.38 \pm 0.24 \pm 0.02$
$a_{0}(1450) \pi^{0}$	$10.0 \pm$	$2.4 \pm$	0.8	$-2.4 \pm 0.05 \pm 0.03$
$a_{2}(1320) \pi^{0}$	$2.1 \pm$	$0.1 \pm$	0.2	$0.77 \pm 0.20 \pm 0.04$
$N R$	$24.4 \pm$	$2.5 \pm$	0.6	$1.49 \pm 0.07 \pm 0.03$
Sum	$85.8 \pm$	$3.6 \pm$	1.2	
χ^{2} / ν				

$K_{1}^{*}(890) K$ amplitude consistent with zero.Spin-one resonances consistent to originate entirely from background.Some residual background from $\gamma \gamma \rightarrow K^{+} K^{-}$.$\square$ The isobar model does not fit very well the data.

The $K_{0}^{*}(1430)$ parameters.

In the $\eta_{c} \rightarrow \pi^{0} K^{+} K^{-}$Dalitz plot analysis we scan the likelihood as a function of the $K_{0}^{*}(1430)$ mass and width.
We obtain:

$$
\begin{aligned}
m\left(K_{0}^{*}(1430)\right) & =1438 \pm 8 \pm 4 \mathrm{MeV} / c^{2} \\
\Gamma\left(K_{0}^{*}(1430)\right) & =210 \pm 20 \pm 12 \mathrm{MeV}
\end{aligned}
$$

$K_{0}^{*}(1430)$ branching fraction.

\square First observation of $K_{0}^{*}(1430) \rightarrow K \eta$.The observation of $K_{0}^{*}(1430)$ in both $K \eta$ and $K \pi^{0}$ decay modes allows a measurement of the relative branching fraction.
\square The Dalitz plot analysis of $\eta_{c} \rightarrow K^{+} K^{-} \eta$ decay gives a total $K_{0}^{*}(1430)^{+} K^{-}$ contribution of

$$
f_{\eta K}=0.164 \pm 0.042 \pm 0.010
$$

\square The Dalitz plot analysis of the $\eta_{c} \rightarrow K^{+} K^{-} \pi^{0}$ decay mode gives a total $K_{0}^{*}(1430)^{+} K^{-}$contribution of

$$
f_{\pi^{0} K}=0.338 \pm 0.019 \pm 0.004
$$

Using the measurement of $\mathcal{R}\left(\eta_{c}\right)$, we obtain the K_{0}^{*} (1430) branching ratio

$$
\frac{\mathcal{B}\left(K_{0}^{*}(1430) \rightarrow \eta K\right)}{\mathcal{B}\left(K_{0}^{*}(1430) \rightarrow \pi K\right)}=\mathcal{R}\left(\eta_{c}\right) \frac{f_{\eta K}}{f_{\pi K}}=0.092 \pm 0.025_{-0.025}^{+0.010}
$$

where $f_{\pi K}$ denotes $f_{\pi^{0} K}$ after correcting for the $K^{0} \pi$ decay mode.
\square Asymmetric systematic uncertainty.

$K_{0}^{*}(1430)$ branching fraction.

\square We note that the amplitude labelled " $N R$ " may be considered to represent an \mathcal{S}-wave, similar to that of the $K_{0}^{*}(1430)^{+} K^{-}$amplitudes
\square We remove the non-resonant contribution in both the $\eta_{c} \rightarrow K^{+} K^{-} \eta$ and $\eta_{c} \rightarrow K^{+} K^{-} \pi^{0}$ Dalitz plot analyses.
\square We obtain significant variation of the $K_{0}^{*}(1430)^{+} K^{-}$fraction in the $\eta_{c} \rightarrow K^{+} K^{-} \pi^{0}$ final state $(\approx$ a factor 2) which is included in the evaluation of the systematic uncertainty.The LASS experiment studied the reaction $K^{-} p \rightarrow K^{-} \eta p$ at $11 \mathrm{GeV} / c$. The $K^{-} \eta$ mass spectrum is dominated by the presence of the $K_{3}^{*}(1780)$ resonance with no evidence for $K_{0}^{*}(1430) \rightarrow K \eta$ decay.However, from PDG:

$$
\Gamma\left(K_{0}^{*}(1430) \rightarrow K \pi\right) / \Gamma\left(K_{0}^{*}(1430)\right)=0.93 \pm 0.04 \pm 0.09
$$Not in conflict with the presence of a small branching fraction for the $K \eta$ decay mode.

Implications for the pseudoscalar meson mixing angle.

\square No evidence for $K_{0}^{*}(1430)$ or $K_{2}^{*}(1430)$ production in the reaction $K^{-} p \rightarrow K^{-} \eta p$ at 11 by LASS experiment with an upper limit

$$
\mathcal{B}\left(K_{2}^{*}(1430) \rightarrow K \eta\right) / \mathcal{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)<0.92 \% \text { at } 95 \% \text { C.L. }
$$

\square This small value is understood in the context of an $\mathrm{SU}(3)$ model with octet-singlet mixing of the η and η^{\prime}.
\square For even angular momentum l (i.e., D-type coupling), it can be shown that a consequence of the resulting $K^{*} \bar{K} \eta$ couplings is

$$
R_{l}=\frac{\mathcal{B}\left(K_{l}^{*} \rightarrow K \eta\right)}{\mathcal{B}\left(K_{l}^{*} \rightarrow K \pi\right)}=\frac{1}{9}\left(\cos \theta_{p}+2 \cdot \sqrt{2} \cdot \sin \theta_{p}\right)^{2} \cdot\left(q_{K \eta} / q_{K \pi}\right)^{2 l+1}
$$

where $q_{K \eta}\left(q_{K \pi}\right)$ is the kaon momentum in the $K \eta(K \pi)$ rest frame at the K^{*} mass and θ_{p} is the $\mathrm{SU}(3)$ singlet-octet mixing angle for the pseudoscalar meson nonet.
\square We note that R_{l} equals zero if

$$
\tan \theta_{p}=-[1 /(2 \cdot \sqrt{2})]\left(i . e ., \theta_{p}=-19.7^{\circ}\right)
$$

Implications for the pseudoscalar meson mixing angle.

For $l=2$, the upper limit $R_{2}=0.0092$ corresponds to $\theta_{p}=-9.0^{\circ}$ and the central value yields $\theta_{p}=-11.4^{\circ}$.In the present analysis, we obtain the value $R_{0}=0.092_{-0.035}^{+0.027}$.The corresponding value of θ_{p} is:$$
\theta_{p}=\left(3.1_{-5.0}^{+3.3}\right)^{\circ}
$$

which differs by about 2.9 standard deviations from the result obtained from the $K_{2}^{*}(1430)$ branching ratio.However, in Feldmann et al. (Int. J. Mod. Phys. A 15, 159 (2000)), it is argued that it is necessary to consider separate octet and singlet mixing angles for the pseudoscalar mesons.

Search for resonances decaying to $J / \psi \phi$.

Several experiments, CDF, CMS and D0 observe structures in the $J / \psi \phi$ mass spectrum from $B^{+} \rightarrow J / \psi \phi K^{+}$.
\square An early study from LHCb do no confirm these findings.
\square The interest is that these resonances may be some type of multiquark states.
$\square J / \psi \phi$ mass spectrum from CMS.
$\Delta m=m\left(\mu^{+} \mu^{-} K^{+} K^{-}\right)-m\left(\mu^{+} \mu^{-}\right)$

A summary of experimental results.

Search for resonances decaying to $J / \psi K^{+} K^{-}$in B meson decay.

Use of the full $B A B A R \Upsilon(4 S)$ dataset, $424 \mathrm{fb}^{-1}$ (arXiv:1407.7244) (charge conjugation is implied).
\square We study the reactions $B^{+} \rightarrow J / \psi K^{+} K^{-} K^{+}$and $B^{0} \rightarrow J / \psi K^{+} K^{-} K_{S}^{0}$.
$\square \Delta E$ signals after requiring $m_{E S}>5.27 \mathrm{GeV} / c^{2}$.
$\Delta E \equiv E_{B}^{*}-\sqrt{s} / 2$,
$m_{E S} \equiv \sqrt{\left(\left(s / 2+\vec{p}_{i} \cdot \vec{p}_{B}\right) / E_{i}\right)^{2}-\vec{p}_{B}^{2}}$,
$\left(E_{i}, \vec{p}_{i}\right)$ is the initial state $e^{+} e^{-}$
four-momentum vector in the lab. and \sqrt{s} is the c.m. energy.
E_{B}^{*} is the B meson energy in the c.m., \vec{p}_{B} is its lab. momentum.

$\square J / \psi K^{+} K^{-}$mass spectra. No evidence for resonant structures.

$\overline{23}$

Selection of $B \rightarrow J / \psi \phi K$.

$\square K^{+} K^{-}$mass spectra for $B^{+} \rightarrow J / \psi K^{+} K^{-} K^{+}$and $B^{0} \rightarrow J / \psi K^{+} K^{-} K_{S}^{0}$.
\square Clear ϕ signals.

\square Selecting a ϕ signal we obtain the corresponding ΔE distributions.

Branching fractions.

$\square J / \psi X$ yields and branching fractions.
\square Each event is weighted by the inverse of the efficiency on the Dalitz plot.

B channel	Event yield	$\mathcal{B}\left(\times 10^{-5}\right)$
$B^{+}{ }_{K K K}$	290 ± 22	6.91 ± 0.52 (stat) ± 0.28 (sys)
$B_{\phi K}^{+}$	189 ± 1	5.06 ± 0.37 (stat) ± 0.15 (sys)
$B^{0}{ }_{K K}{ }^{\prime}{ }_{\text {K }}$	68 ± 13	3.35 ± 0.66 (stat) ± 0.15 (sys)
$B^{0}{ }_{\phi K_{S}}$	41 ± 7	2.13 ± 0.36 (stat) ± 0.06 (sys)
$B^{0}{ }_{\phi}$	6 ± 4	<0.101
$\square \Delta E$ signal for $B^{0} \rightarrow J / \psi \phi$ candidates: no signal.		

Branching fractions.

\square We compute the ratios:

$$
\begin{aligned}
R_{+} & =\frac{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+} K^{-} K^{+}\right)}{\mathcal{B}\left(B^{+} \rightarrow J / \psi \phi K^{+}\right)}=1.39 \pm 0.15 \pm 0.07 \\
R_{0} & =\frac{\mathcal{B}\left(B^{0} \rightarrow J / \psi K^{+} K^{-} K_{S}^{0}\right)}{\mathcal{B}\left(B^{0} \rightarrow J / \psi \phi K_{S}^{0}\right)}=1.54 \pm 0.40 \pm 0.08
\end{aligned}
$$

and they are consistent with being equal within the uncertainties.
For the ratios:

$$
\begin{gathered}
R_{\phi}=\frac{\mathcal{B}\left(B^{0} \rightarrow J / \psi \phi K_{S}^{0}\right)}{\mathcal{B}\left(B^{+} \rightarrow J / \psi \phi K^{+}\right)}=0.48 \pm 0.09 \pm 0.02 \\
R_{2 K}=\frac{\mathcal{B}\left(B^{0} \rightarrow J / \psi K^{+} K^{-} K_{S}^{0}\right)}{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+} K^{-} K^{+}\right)}=0.52 \pm 0.09 \pm 0.03
\end{gathered}
$$

we find values in agreement with the expectation of the spectator quark model ($R_{\phi} \sim R_{2 K} \sim 0.5$).

Efficiency.

\square We compute the efficiency on the Dalitz plot by generating and reconstructing phase space MC events.Efficiency on the Dalitz plot for $B^{+} \rightarrow J / \psi \phi K^{+}$and $B^{0} \rightarrow J / \psi \phi K_{S}^{0}$.
The lower efficiency at low $J / \psi \phi$ mass is due to the lower reconstruction of low kaon momentum in the laboratory frame, as a result of energy loss in the beampipe and SVT material.

Search for resonances in the $J / \psi \phi$ mass spectra.

\square We search for the resonances claimed by the CDF collaboration by performing an unbinned maximum likelihood fit for $B \rightarrow J / \psi \phi K$ decays.

- We model the resonances using S-wave relativistic Breit-Wigner functions with parameters fixed to the CDF values.
- The non-resonant contributions are represented by a constant term (PHSP) and no interference is allowed between the fit components.
- We estimate the background contributions from the ΔE sidebands and incorporated into the non-resonant PHSP term.
- The decay of a pseudoscalar meson to two vector states contains high spin contributions which could generate non-uniform angular distributions.
- However, due to the limited data sample we do not include such angular terms, and assume that the resonances decay isotropically.
- The amplitudes are normalized using PHSP MC generated events.
- The fit functions are weighted by the the two-dimensional efficiency computed on the Dalitz plots.

Search for resonances in the $J / \psi \phi$ mass spectra.

Fit projections on the $J / \psi \phi$ mass spectra in the hypothesis of the presence of two $X(4140)$ and $X(4270)$ resonances.

\square Fit to the B^{0} data as a difference between the fits to the $\left(B^{+}+B^{0}\right)$ and B^{+}data.Efficiency projection and efficiency corrected $J / \psi \phi$ mass spectrum for $\left(B^{+}+B^{0}\right)$ data.

Results from the fits.

Fits to the $B \rightarrow J / \psi \phi K$ Dalitz plot. For each fit, the table gives the fit fraction for each resonance, and the 2 D and $1 \mathrm{D} \chi^{2}$ values.

Channel	$f_{X(4140)}(\%)$	$f_{X(4270)}(\%)$	$2 \mathrm{D} \chi^{2} / \nu$	$1 \mathrm{D} \chi^{2} / \nu$
B^{+}	9.2 ± 3.3	10.6 ± 4.8	$12.7 / 12$	$6.5 / 20$
	9.2 ± 2.9	0.	$17.4 / 13$	$15.0 / 17$
	0.	10.0 ± 4.8	$20.7 / 13$	$19.3 / 19$
$B^{0}+B^{+}$	7.3 ± 3.8	12.0 ± 4.9	$8.5 / 12$	$15.9 / 19$

\square We obtain the following background-corrected fractions for B^{+}:

$$
f_{X(4140)}=(9.2 \pm 3.3 \pm 4.7) \%, f_{X(4270)}=(10.6 \pm 4.8 \pm 7.1) \%
$$

\square Combining statistical and systematic uncertainties in quadrature, we obtain significances of 1.6 and 1.2σ for $X(4140)$ and $X(4270)$, respectively.

Upper limits.

\square We obtain the ULs at 90% c.l.:

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow X(4140) K^{+}\right) \times \mathcal{B}(X(4140) \rightarrow J / \psi \phi) / \mathcal{B}\left(B^{+} \rightarrow J / \psi \phi K^{+}\right)<0.135 \\
\mathcal{B}\left(B^{+} \rightarrow X(4270) K^{+}\right) \times \mathcal{B}(X(4270) \rightarrow J / \psi \phi) / \mathcal{B}\left(B^{+} \rightarrow J / \psi \phi K^{+}\right)<0.184
\end{aligned}
$$

\square The $X(4140)$ limit may be compared with the CDF measurement of $0.149 \pm 0.039 \pm 0.024$ and the LHCb limit of 0.07 .
\square The $X(4270)$ limit may be compared with the LHCb limit of 0.08 .
\square Similar results are obtained using the CMS measurements.

Conclusions.

We obtain first observation of new η_{c} and $\eta_{c}(2 S)$ decay modes in the $\eta K^{+} K^{-}$and $\pi^{0} K^{+} K^{-}$produced in two-photon interactions.\square We perform the first Dalitz plot analyses of η_{c} decays to three-body. These decays are dominated by scalar meson resonances.
\square We report the first observation of $K_{0}^{*}(1430) \rightarrow K \eta$, measure its parameters and its branching fraction.
\square We obtain a new estimate of the pseudoscalars mixing angle which does not agree well with measurements obtained from the study of spin-2 resonances.
\square The isobar model for $K_{0}^{*}(1430)$ does not describe well the Dalitz plot of $\eta_{c} \rightarrow K^{+} K^{-} \pi^{0}$. Alternative models need to be tested.

Conclusions.

\square We study the decays $B^{+} \rightarrow J / \psi \phi K^{+}, B^{0} \rightarrow J / \psi \phi K_{S}^{0}$ and measure new branching fractions.
\square We search for new resonances in the $J / \psi \phi$ mass spectrum from B decays.
\square We find that the phase-space uniform distribution does not describe the data well.
\square We derive upper limits for the production of $X(4140)$ and $X(4270)$.

